Toward link predictability of complex networks.

نویسندگان

  • Linyuan Lü
  • Liming Pan
  • Tao Zhou
  • Yi-Cheng Zhang
  • H Eugene Stanley
چکیده

The organization of real networks usually embodies both regularities and irregularities, and, in principle, the former can be modeled. The extent to which the formation of a network can be explained coincides with our ability to predict missing links. To understand network organization, we should be able to estimate link predictability. We assume that the regularity of a network is reflected in the consistency of structural features before and after a random removal of a small set of links. Based on the perturbation of the adjacency matrix, we propose a universal structural consistency index that is free of prior knowledge of network organization. Extensive experiments on disparate real-world networks demonstrate that (i) structural consistency is a good estimation of link predictability and (ii) a derivative algorithm outperforms state-of-the-art link prediction methods in both accuracy and robustness. This analysis has further applications in evaluating link prediction algorithms and monitoring sudden changes in evolving network mechanisms. It will provide unique fundamental insights into the above-mentioned academic research fields, and will foster the development of advanced information filtering technologies of interest to information technology practitioners.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Link Prediction using Network Embedding based on Global Similarity

Background: The link prediction issue is one of the most widely used problems in complex network analysis. Link prediction requires knowing the background of previous link connections and combining them with available information. The link prediction local approaches with node structure objectives are fast in case of speed but are not accurate enough. On the other hand, the global link predicti...

متن کامل

Bounded link prediction for very large networks

Evaluation of link prediction methods is a hard task in very large complex networks because of the inhibitive computational cost. By setting a lower bound of the number of common neighbors (CN), we propose a new framework to efficiently and precisely evaluate the performances of CN-based similarity indices in link prediction for very large heterogeneous networks. Specifically, we propose a fast...

متن کامل

A Link Prediction Method Based on Learning Automata in Social Networks

Nowadays, online social networks are considered as one of the most important emerging phenomena of human societies. In these networks, prediction of link by relying on the knowledge existing of the interaction between network actors provides an estimation of the probability of creation of a new relationship in future. A wide range of applications can be found for link prediction such as electro...

متن کامل

Supporting Information ( SI ) for “ Toward link predictability of complex networks ”

If the adjacency matrix contains degenerate eigenvalues, we must modify the approach using non-degenerate eigenvalues. We denote the eigenvalues as λki, where the index k runs over different eigenvalues and the index i runs over M associated eigenvectors of the same eigenvalue. Note that there is no unique way of choosing a basis for the eigenvectors of the unperturbed network since any linear ...

متن کامل

Link Prediction and the Role of Stronger Ties in Networks of Face-to-Face Proximity

Understanding the structures why links are formed is an important and prominent research topic. In this paper, we therefore consider the link prediction problem in face-to-face contact networks, and analyze the predictability of new and recurring links. Furthermore, we study additional influence factors, and the role of stronger ties in these networks. Specifically, we compare neighborhoodbased...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 112 8  شماره 

صفحات  -

تاریخ انتشار 2015